Abstract

A goal of ground penetrating radar (GPR) preprocessing is to distinguish background from data containing explosive threats. This is commonly achieved by performing depth-dependent mean and standard deviation normalization, where the mean and standard deviation are computed on background data. Under the assumption that data with explosive threats have different statistical characteristics than the background/clutter, after normalization explosive threat data will have larger absolute normalized scores than the background/clutter. An underlying problem is determining which data to compute the background mean and standard deviation statistics over. Often the background statistics are computed over a moving window, which is centered at the location of interest and has a predetermined guard band, a region of data that is ignored. However, buried explosive threats vary considerably in their shapes and more importantly sizes subsequently, the size of the GPR responses from these objects are considerably varied. We examine a number of additional detection methods that utilize Robust Principal Component Analysis (RPCA), where RPCA decomposes the data into low-rank and sparse components. Intuitively, the low-rank component should capture the background data and the sparse should capture the anomalous explosive threat response. We find that detection performance using energy- and shape-based detection algorithms improves when using RPCA preprocessing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.