Abstract
Administrative datasets are useful for identifying rare disease cohorts such as pediatric acute myeloid leukemia (AML). Previously, cohorts were assembled using labor-intensive, manual reviews of patients' longitudinal chemotherapy data. We utilized a two-step machine learning (ML) method to (i) identify pediatric patients with newly diagnosed AML, and (ii) among the identified AML patients, their chemotherapy courses, in an administrative/billing database. Using 2558 patients previously manually reviewed, multiple ML algorithms were derived from 75% of the study sample, and the selected model was tested in the remaining hold-out sample. The selected model was also applied to assemble a new pediatric AML cohort and further assessed in an external validation, using a standalone cohort established by manual chart abstraction. For patient identification, the selected Support Vector Machine model yielded a sensitivity of 0.97 and a positive predictive value (PPV) of 0.97 in the hold-out test sample. For course-specific chemotherapy regimen and start date identification, the selected Random Forest model yielded overall PPV greater than or equal to 0.88 and sensitivity greater than or equal to 0.86 across all courses in the test sample. When applied to new cohort assembly, ML identified 3016 AML patients with 10,588 treatment courses. In the external validation subset, PPV was greater than or equal to 0.75 and sensitivity was greater than or equal to 0.82 for patient identification, and PPV was greater than or equal to 0.93 and sensitivity was greater than or equal to 0.94 for regimen identifications. A carefully designed ML model can accurately identify pediatric AML patients and their chemotherapy courses from administrative databases. This approach may be generalizable to other diseases and databases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.