Abstract

A control technique comprising three Fuzzy Logic Proportional Integral Derivative (FLPID) controllers was evaluated to determine their ability to shorten convergence times for the computationally expensive globally unsteady model of a low-density polyethylene reactor. The numerical reactor contained millions of computational elements, a rotating stirrer shaft, intricate near-wall geometry, and highly exothermic polymerization kinetics. Catalyst feed rates were instantaneously increased by 50% to evaluate the FLPID’s performance during a hypothetical process excursion. FLPID achieved quasi-steady state (QSS) 54% faster than conventionally tuned PID controllers. Reducing the percent overshoot of the error and rise time of the controller output, the FLPID demonstrated its ability to lower computational cost. FLPID in CFD offers the potential to improve control methods on actual plant scale processes. In particular, the reduction in error overshoot could reduce the likelihood of reactor overheat events as the temperatures are kept within a tighter operational window.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.