Abstract
Behavior-based detection approaches commonly address the threat of statically obfuscated malware. Such approaches often use graphs to represent process or system behavior and typically employ frequency-based graph mining techniques to extract characteristic patterns from collections of malware graphs. Recent studies in the molecule mining domain suggest that frequency-based graph mining algorithms often perform sub-optimally in finding highly discriminating patterns. We propose a novel malware detection approach that uses so-called compression-based mining on quantitative data flow graphs to derive highly accurate detection models. Our evaluation on a large and diverse malware set shows that our approach outperforms frequency-based detection models in terms of detection effectiveness by more than 600 percent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Dependable and Secure Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.