Abstract

The transition temperatures of nanoscale polymeric films are measured from a leveling experiment where a designed nanostructure is heated from below. Surface tension forces drive the relaxation of the polymeric features, allowing direct measurement of the critical temperature of collapse, Tflow, and indirect measurement of the glass transition temperature, TG. Small-angle X-ray scattering and atomic force microscopy are used to follow the leveling dynamics, whereas a mathematical model for the momentum balance is implemented to extract the viscosity of the polymer film as a function of temperature. Our methodology is illustrated in the context of films of poly(methyl methacrylate) that are patterned via nanoimprint lithography into dense gratings. We study how the glass transition temperature and the critical temperature of collapse vary as a function of the film size and the inclusion of the antiplasticizer, tris(2-chloropropyl) phosphate. The grating periods are varied consistently between 80 and 240 nm, whereas the antiplasticizer concentrations are 1, 3, 5, and 10 wt %. The solution of the momentum balance allows the detailed correlation between stresses, curvature, heating, and shear rates during leveling. We found that both temperatures, TG and Tflow, decrease as the film size decreases or as the concentration of the antiplasticizer increases. In addition, antiplasticizer concentrations between 3 and 5 wt % stabilize the size dependence of Tflow. We show that the nature of the antiplasticizer is effectively to increase the low-temperature viscosity of the film. However, during leveling, the antiplasticized film sustains its curvature, thereby driving a sudden relaxation, once TG is reached, and increasing the possibilities of defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.