Abstract

In this study, we propose a method for constructing a multishape statistical shape model (SSM) for nested structures such that each is a subset or superset of another. The proposed method has potential application to any pair of shapes with an inclusive relationship. These types of shapes are often found in anatomy, such as the brain surface and ventricles. The main contribution of this paper is to introduce a new shape representation called log-transformed level set function (LT-LSF), which has a vector space structure that preserves the correct inclusive relationship of the nested shape. In addition, our method is applicable to an arbitrary number of nested shapes. We demonstrate the effectiveness of the proposed shape representation by modeling the anatomy of human embryos, including the brain, ventricles, and choroid plexus volumes. The performance of the SSM was evaluated in terms of generalization and specificity ability. Additionally, we measured leakage criteria to assess the ability to preserve inclusive relationships. A quantitative comparison of our SSM with conventional multishape SSMs demonstrates the superiority of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.