Abstract

Level density models have an undeniable importance for a better perception on the nature of nuclear reactions, which influences our life via various ways. Many novel and advanced medical application use radioisotopes, which are produced with nuclear reactions. By considering the connection between the level density models and the importance of theoretical calculations for the production routes of medically important isotopes, this study is performed to investigate the level density model effects on the production cross-section calculations of [Formula: see text]Zn, [Formula: see text]Ga, [Formula: see text]Kr, [Formula: see text]Pd, [Formula: see text]In, [Formula: see text]I and [Formula: see text]At radioisotopes via some alpha particle induced and neutron emitting reactions. For theoretical calculations; frequently used computation tools, such as TALYS and EMPIRE codes, are applied. Obtained theoretical results are then compared with the experimental data, taken from Experimental Nuclear Reaction Data (EXFOR) library. For a better interpretation of the results, a mean weighted deviation calculation for each investigated reaction is performed in addition to a visual comparison of the graphical representations of the outcomes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.