Abstract

AbstractHuman lymphocyte antigen alloimmunization to filter leukoreduced (F-LR) platelets occurs in about 18% of immunosuppressed thrombocytopenic hematology/oncology patients and represents a significant challenge for effective chemotherapy. In a dog platelet transfusion model, we have evaluated other methods of preventing alloimmune platelet refractoriness and demonstrated that successful methods in our dog model are transferable to man. In the present study, donor/recipient pairs were dog lymphocyte antigen DR-B incompatible (88% of the pairs), and recipient dogs received up to 8 weekly treated transfusions from a single donor (a highly immunogenic stimulus), or until platelet refractoriness. Continued acceptance of F-LR platelets occurred in 6 of 13 recipients (46%), but neither γ-irradiation (γ-I; 0 of 5) nor Mirasol pathogen reduction (MPR; 1 of 7) treatment of donor platelets prevented alloimmune platelet refractoriness. Combining γ-I with F-LR was associated with only 2 of 10 (20%) recipients accepting the transfused platelets. Surprisingly, F-LR platelets that then underwent MPR were accepted by 21 of 22 (95%) recipients (P < .001 vs F-LR + γ-I recipients). Furthermore, 7 of 21 (33%) of these accepting recipients demonstrated specific tolerance to 8 more weekly donor transfusions that had not been treated. In addition, platelet concentrates prepared from F-LR + MPR whole blood were also nonimmunogenic; that is, 10 of 10 (100%) recipients accepted donor platelets. Overall, 31 of 32 (97%) recipients accepted F-LR + MPR platelets; none developed antibodies to donor lymphocytes. These data are the highest rate of acceptance for platelet transfusions reported in either animals or man. This approach to platelet transfusion may be particularly important when supporting patients with intact immune systems, such as in myelodysplastic syndromes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.