Abstract

ABSTRACTThe silk gland is characterized by high protein synthesis. However, the molecular mechanisms controlling silk gland growth and silk protein synthesis remain undetermined. Here we demonstrated that CRISPR/Cas9-based knockdown of let-7 or the whole cluster promoted endoreduplication and enlargement of the silk gland, accompanied by changing silk yield, whereas transgenic overexpression of let-7 led to atrophy and degeneration of the silk gland. Mechanistically, let-7 controls cell growth in the silk gland through coordinating nutrient metabolism processes and energy signalling pathways. Transgenic overexpression of pyruvate carboxylase, a novel target of let-7, resulted in enlargement of the silk glands, which is consistent with the abnormal phenotype of the let-7 knockdown. Overall, our data reveal a previously unknown miRNA-mediated regulation of silk gland growth and physiology and shed light on involvement of let-7 as a critical stabilizer and booster in carbohydrate metabolism, which may have important implications for understanding of the molecular mechanism and physiological function of specialized organs in other species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.