Abstract
This paper investigates the problem of dependent stability criteria for neutral type neural networks with mixed time-varying delays. Firstly, some new delay-dependent stability results are obtained by employing the more general partitioning approach and generalizing the famous Jensen inequality. Secondly, based on a new type of Lyapunov-Krasovskii functional with the cross terms of variables, less conservative stability criteria are proposed in terms of linear matrix inequalities (LMIs). Furthermore, it is the first time that the idea of second-order convex combination and the property of quadratic convex function applied to the derivation of neutral type neural networks play an important role in reducing the conservatism of the paper. Finally, four numerical examples are given to show the effectiveness and the advantage of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.