Abstract

Fifteen START domain-containing proteins exist in mammals. On the basis of their structural homology, this family is divided into several sub-families consisting mainly of non-vesicular intracellular lipid carriers. With the exception of the Thioesterase-START subfamily, the other subfamilies are represented among invertebrates. The START domain is always located in the C-terminus of the protein. It is a module of about 210 residues that binds lipids, including sterols. Cholesterol, 25-hydroxycholesterol, phosphatidylcholine, phosphatidylethanolamine and ceramides are ligands for STARD1/STARD3-6, STARD5, STARD2/STARD10, STARD10 and STARD11, respectively. The lipids or sterols bound by the remaining 7 START proteins are unknown. The START domain can be regarded as a lipid-exchange and/or a lipid-sensing domain. The START domain consists in a deep lipid-binding pocket--that shields the hydrophic ligand from the external aqueous environment--covered by a lid formed by a C-terminal alpha helix. Within the same subgroup, such as the sterols-carriers subgroup, different START domains have similar biochemical properties; however, their expression profile and their subcellular localization distinguish them and are critical for their different biological functions. START proteins act in a variety of distinct physiological processes, such as lipid transfer between intracellular compartments, lipid metabolism and modulation of signaling events. Mutation or misexpression of START proteins is linked to pathological processes, including genetic disorders, autoimmune diseases and cancers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.