Abstract
It is becoming apparent that the hormone leptin plays an important role in modulating hippocampal function. Indeed, leptin enhances NMDA receptor activation and promotes hippocampal long-term potentiation (LTP). Furthermore, obese rodents with dysfunctional leptin receptors display impairments in hippocampal synaptic plasticity. Here we demonstrate that under conditions of enhanced excitability (evoked in Mg2+-free medium or following blockade of GABA(A) receptors), leptin induces a novel form of long-term depression (LTD) in area CA1 of the hippocampus. Leptin-induced LTD was markedly attenuated in the presence of D-(-)-2-Amino-5-Phosphonopentanoic acid (D-AP5), suggesting that it is dependent on the synaptic activation of NMDA receptors. In addition, low-frequency stimulus-evoked LTD occluded the effects of leptin. In contrast, metabotropic glutamate receptors (mGluRs) did not contribute to leptin-induced LTD as mGluR antagonists failed to either prevent or reverse this process. The signalling mechanisms underlying leptin-induced LTD were independent of the Ras-Raf-mitogen-activated protein kinase signalling pathway, but were markedly enhanced following inhibition of either phosphoinositide 3-kinase or protein phosphatases 1 and 2A. These data indicate that under conditions of enhanced excitability, leptin induces a novel form of homosynaptic LTD, which further underscores the proposed key role for this hormone in modulating NMDA receptor-dependent hippocampal synaptic plasticity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.