Abstract

The effect of disaccharide lepidimoide on light-induced chlorophyll accumulation was studied in cotyledons of sunflower (Helianthus annuus L.) seedlings and detached cucumber (Cucumis sativus L.) cotyledons. From studies on the structure-activity relationships of lepidimoide, its analogs, and sucrose with respect to light-induced chlorophyll accumulation in the cotyledons of sunflower seedlings, both lepidimoide and the free carboxylic acid of lepidimoide (lepidimoic acid) showed the highest promoting activity, whereas the hydrogenated lepidimoide, which lacks a double bond in the C4, 5 position in uronic acid, showed lower activity than lepidimoide; however, sucrose exhibited very weak activity. These results suggest that lepidimoide acts as a new type of plant growth regulator, not simply as a carbon source providing energy. Lepidimoide promoted not only light-induced chlorophyll accumulation in sunflower cotyledons but also light-induced 5-aminolevulinic acid content, which is considered to be a rate-limiting step in chlorophyll biosynthesis. Lepidimoide with cytokinin stimulated the accumulation of chlorophyll and 5-aminolevulinic acid additively. In detached cucumber cotyledons, lepidimoide also promoted light-induced chlorophyll accumulation. These results indicate that lepidimoide, in cooperation with cytokinin, causes light-induced chlorophyll accumulation in the cotyledons of several dicot plant species by affecting the level of 5-aminolevulinic acid. Key Words. 5-Aminolevulinic acid accumulation-Chlorophyll accumulation-Cucumis sativus-Cytokinin-Helianthus annuus-Lepidimoic acid-Lepidimoide-Structure-activity relationship

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.