Abstract

Infection of a cell by lentiviruses, such as human immunodeficiency virus type 1 or feline immunodeficiency virus, results in the formation of a reverse transcription complex, the pre-integration complex (PIC), where viral DNA is synthesized. In non-dividing cells, efficient nuclear translocation of the PIC requires the presence of the inner nuclear lamina protein emerin (EMD). Here, we demonstrate that EMD phosphorylation is induced early after infection in primary non-dividing cells. Furthermore, we demonstrate that EMD phosphorylation is dependent on virion-associated mitogen-activated protein kinase (MAPK). Specific inhibition of MAPK activity with kinase inhibitors markedly reduced EMD phosphorylation and resulted in decreased integration of the proviral DNA into chromatin. Similarly, when a MEK1 kinase-inactive mutant was expressed in virus-producer cells, virus-induced phosphorylation of EMD was impaired and viral integration reduced during the subsequent infection. Expression of constitutively active MEK1 kinase in producer cells did not result in modulation of EMD phosphorylation or viral integration during subsequent infection. These studies demonstrate that, in addition to phosphorylating components of the PICs at an early step of infection, virion-associated MAPK plays a role in facilitating cDNA integration after nuclear translocation through phosphorylation of target-cell EMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.