Abstract

Hybrid metal–semiconductor nanostructures are promising photocatalysts for a wide span of reactions. Determining the relationship of their geometry with catalytic efficiency is critical for optimization of the catalysts. In this work, Ag-CdS nanorods with five different lengths (from 25.0 to 106.5 nm) have been synthesized using a seed-mediated growth method. High-resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDS) studies confirmed that the formation of a metal tip and semiconductor body part and they absorb strongly and broadly in the UV and visible wavelength range. The nanorods have been employed as photocatalysts for methyl orange degradation and their catalytic efficiency exhibited length-dependence. Specifically, the highest efficiency was observed in the rods of intermediate length (72.1 nm). Time-dependent photoluminescence decay revealed that the Ag-CdS rods with high catalytic efficiency have a higher probability to go through charge-separation-recombination pathway than the rods with low catalytic efficiency. Understanding the physical process in these hybrid structures provides insight into fine-tuning their geometry to improve the charge transfer efficiency from the metal to the semiconductor domain. Thus, better hybrid nanomaterials can be designed and fabricated for photocatalytic and other applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.