Abstract

The effects of the length of single-wall carbon nanotubes (SWCNTs) on their thin film transistors (TFTs) were investigated by using SWCNTs sorted in length using size exclusion chromatography. Higher device performances were obtained in longer SWCNTs and it was found that the average length of the SWCNTs is an important factor to determine the device performance. Detailed analyses, in which the SWCNT density was normalized using percolation threshold, confirmed that the dependence of on-current on the normalized density approximately follows percolation theory, independently of the SWCNT length. On the other hand, the behaviors of off-current and on/off ratio showed the considerably different dependence among SWCNT lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.