Abstract
Balance in the human body's movement is generally associated with different synergistic pathologies. The trunk is supported by one's leg most of the time when walking. A person with poor balance may face limitation when performing their physical activities on a daily basis, and they may be more prone to having risk of fall. The ground reaction forces (GRFs), centre of pressure (COP), and centre of mass (COM) in quite standing posture were often measured for the evaluation of balance. Currently, there is still no experimental evidence or study on leg length discrepancy (LLD) during walking. Analysis of the stability parameters is more representative of the functional activity undergone by the person who has a LLD. Therefore, this study hopes to shed new light on the effects of LLD on the dynamic stability associated with VGRF, COP, and COM during walking. Eighteen healthy subjects were selected among the university population with normal BMIs. Each subject was asked to walk with 1.0 to 2.0 ms−1 of walking speed for three to five trials each. Insoles of 0.5 cm thickness were added, and the thickness of the insoles was subsequently raised until 4 cm and placed under the right foot as we simulated LLD. The captured data obtained from a force plate and motion analysis present Peak VGRF (single-leg stance) and WD (double-leg stance) that showed more forces exerted on the short leg rather than long leg. Obviously, changes occurred on the displacement of COM trajectories in the ML and vertical directions as LLD increased at the whole gait cycle. Displacement of COP trajectories demonstrated that more distribution was on the short leg rather than on the long leg. The root mean square (RMS) of COP-COM distance showed, obviously, changes only in ML direction with the value at 3 cm and 3.5 cm. The cutoff value via receiver operating characteristic (ROC) indicates the significant differences starting at the level 2.5 cm up to 4 cm in long and short legs for both AP and ML directions. The present study performed included all the proposed parameters on the effect of dynamic stability on LLD during walking and thus helps to determine and evaluate the balance pattern.
Highlights
In human movement, stability plays an important role to help avoid sustaining serious injuries such as fall for those who are unstable, and falls are likely to cause bone fractures in the long term
With successive increases in the level of Leg length discrepancy (LLD), the vertical ground reaction force (VGRF) impact showed it moved towards the left leg which is represented as the short leg
It is possible to distinguish the determinants of stability in asymmetry gait by visual inspection for severe LLD; it is hard to prove and difficult to quantify the difference appropriately for mild levels of LLD for the human eye. erefore, this study set out to assess the effect of VGRF, centre of mass (COM), and centre of pressure (COP) trajectories, as well as root mean square (RMS) difference between each COPCOM distance parameters on the dynamic stability of LLD during walking
Summary
Stability plays an important role to help avoid sustaining serious injuries such as fall for those who are unstable, and falls are likely to cause bone fractures in the long term. Patients with an asymmetrical leg length will have a provoked postural control and minimal stability during standing and walking [4]. It is often developed by the changes in kinematics of the lower limb which involves altering the plantar flexion of the ankle on the short side with pelvic tilt whilst flexing the hip and knee on the long side. E aetiology of LLD can be classified into two types—structural LLD, defined as the shortening of the bone structures, and functional LLD, defined as any mechanical changes that alter the posture of the lower extremities such as knee flexion/extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.