Abstract
Abstract Let r : X 2 → X 2 {r\colon X^{2}\rightarrow X^{2}} be a set-theoretic solution of the Yang–Baxter equation on a finite set X. It was proven by Gateva-Ivanova and Van den Bergh that if r is non-degenerate and involutive, then the algebra K 〈 x ∈ X ∣ x y = u v if r ( x , y ) = ( u , v ) 〉 {K\langle x\in X\mid xy=uv\text{ if }r(x,y)=(u,v)\rangle} shares many properties with commutative polynomial algebras in finitely many variables; in particular, this algebra is Noetherian, satisfies a polynomial identity and has Gelfand–Kirillov dimension a positive integer. Lebed and Vendramin recently extended this result to arbitrary non-degenerate bijective solutions. Such solutions are naturally associated to finite skew left braces. In this paper we will prove an analogue result for arbitrary solutions r B {r_{B}} that are associated to a left semi-brace B; such solutions can be degenerate or can even be idempotent. In order to do so, we first describe such semi-braces and then prove some decompositions results extending those of Catino, Colazzo and Stefanelli.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.