Abstract

AimsLeft ventricular diastolic pressure estimation is essential for characterization of heart failure (HF). Patients with normal resting left atrial (LA) pressures (LAP), but steep LAP elevation on exertion, pose a particular diagnostic challenge. Current recommendations on echocardiographic LAP estimation have limited accuracy. Our aim was to investigate whether LA mechanical alterations assessed by LA strain (LA-GS) can contribute to non-invasive LAP diagnostics.Methods and resultsSimultaneous echocardiographic and right heart catheterization (RHC) data at rest and during exercise was analyzed in 164 prospectively enrolled patients, referred for RHC due to HF symptoms. 56% had preserved ejection fraction (pEF). At rest, 97 patients displayed elevated mean pulmonary arterial wedge pressure (PAWPM); further 32 patients had normal resting, but elevated PAWPM during exercise. LA-GS demonstrated a stronger relationship with resting PAWPM (r = − 0.61, p < 0.001) than any of the indices (E/e′, LAVi, TRVmax) incorporated in the currently recommended diagnostic algorithm. The diagnostic ability of LA-GS for detecting elevated resting PAWPM (AUC: 0.80, p < 0.001) outperformed that of the recommended algorithm (AUC: 0.69). Importantly, resting LA-GS performed even better in identifying patients with pathological PAWPM either at rest or during stress (AUC: 0.90, p < 0.001), whereas the diagnostic potential of the current algorithm was modest and limited to pEF patients (AUC = 0.72). Finally, among the non-invasive indices, LA-GS entailed the strongest prognostic value for death or heart transplantation (OR: 2.7; p < 0.05).ConclusionLA-GS comprises a robust method for PAWPM assessment at rest. More importantly, it reliably discerns pathological PAWPM rise on exertion despite normal resting pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.