Abstract

Bright-red light-emitting diodes (LEDs) with a narrow emission line width that emit between 620 and 635 nm are needed to meet the latest industry color standard for wide color gamut displays, Rec. 2020. CsPbI3 perovskite quantum dots (QDs) are one of the few known materials that are ideally suited to meet these criteria. Unfortunately, CsPbI3 perovskite QDs are prone to transform into a non-red-emitting phase and are subject to further degradation mechanisms when their luminescence wavelength is tuned to match that of the Rec. 2020 standard. Here, we show that zwitterionic lecithin ligands can stabilize the perovskite phase of CsPbI3 QDs for long periods in air for at least 6 months compared to a few days for control samples. LEDs fabricated with our ultrastable lecithin-capped CsPbI3 QDs exhibit an external quantum efficiency (EQE) of 7.1% for electroluminescence centered at 634 nm─a record for all-inorganic perovskite nanocrystals in Rec. 2020 red. Our devices achieve a maximum luminance of 1391 cd/m2 at 7.5 V, and their operational half-life is 33 min (T50) at 200 cd/m2─a 10-fold enhancement compared to control samples. Density functional theory results suggest that the surface strain in CsPbI3 QDs capped with the conventional ligands, oleic acid and oleylamine, contributes to the instability of the perovskite structural phase. On the other hand, lecithin binding induces virtually no surface strain and shows a stronger binding tendency for the CsPbI3 surface. Our study highlights the tremendous potential of zwitterionic ligands in stabilizing the perovskite phase and particle size of CsPbI3 QDs for various optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.