Abstract

A matrix A ∈ R n × n is called a bisymmetric matrix if its elements a i , j satisfy the properties a i , j = a j , i and a i , j = a n - j + 1 , n - i + 1 for 1 ⩽ i , j ⩽ n . This paper considers least squares solutions to the matrix equation AX = B for A under a central principal submatrix constraint and the optimal approximation. A central principal submatrix is a submatrix obtained by deleting the same number of rows and columns in edges of a given matrix. We first discuss the specified structure of bisymmetric matrices and their central principal submatrices. Then we give some necessary and sufficient conditions for the solvability of the least squares problem, and derive the general representation of the solutions. Moreover, we also obtain the expression of the solution to the corresponding optimal approximation problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.