Abstract

State-feedback model predictive control (MPC) of constrained discrete-time periodic affine systems is considered. The periodic systems’ states and inputs are subject to periodically time-dependent, hard, polyhedral constraints. Disturbances are additive, bounded and subject to periodically time-dependent bounds. The objective is to design MPC laws that robustly enforce constraint satisfaction in a manner that is least-restrictive, i.e., have the largest possible domain. The proposed design method is demonstrated on a building climate control example. The proposed method is directly applicable to time-invariant MPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.