Abstract

A key question in the design of specialized hardware for simulation of neural networks is whether fixed-point arithmetic of limited numerical precision can be used with existing learning algorithms. An empirical study of the effects of limited precision in cascade-correlation networks on three different learning problems is presented. It is shown that learning can fail abruptly as the precision of network weights or weight-update calculations is reduced below a certain level, typically about 13 bits including the sign. Techniques for dynamic rescaling and probabilistic rounding that allow reliable convergence down to 7 bits of precision or less, with only a small and gradual reduction in the quality of the solutions, are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.