Abstract

Users make choices among multi-attribute objects in a data set in a variety of domains including used car purchase, job search and hotel room booking. Individual users sometimes have strong preferences between objects, but these preferences may not be universally shared by all users. If we can cast these preferences as derived from a quantitative user-specific preference function, then we can predict user preferences by learning their preference function, even though the preference function itself is not directly observable, and may be hard to express. In this paper we study the problem of preference learning with pairwise comparisons on a set of entities with multiple attributes. We formalize the problem into two subproblems, namely preference estimation and comparison selection. We propose an innovative approach to estimate the preference, and introduce a binary search strategy to adaptively select the comparisons. We introduce the concept of an orthogonal query to support this adaptive selection, as well as a novel S-tree index to enable efficient evaluation of orthogonal queries. We integrate these components into a system for inferring user preference with adaptive pairwise comparisons. Our experiments and user study demonstrate that our adaptive system significantly outperforms the naïve random selection system on both real data and synthetic data, with either simulated or real user feedback. We also show our preference learning approach is much more effective than existing approaches, and our S-tree can be constructed efficiently and perform orthogonal query at interactive speeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.