Abstract

Neural semantic parsers usually generate meaning representation tokens from natural language tokens via an encoder-decoder model. However, there is often a vocabulary-mismatch problem between natural language utterances and logical forms. That is, one word maps to several atomic logical tokens, which need to be handled as a whole, rather than individual logical tokens at multiple steps. In this paper, we propose that the vocabulary-mismatch problem can be effectively resolved by leveraging appropriate logical tokens. Specifically, we exploit macro actions, which are of the same granularity of words/phrases, and allow the model to learn mappings from frequent phrases to corresponding sub-structures of meaning representation. Furthermore, macro actions are compact, and therefore utilizing them can significantly reduce the search space, which brings a great benefit to weakly supervised semantic parsing. Experiments show that our method leads to substantial performance improvement on three benchmarks, in both supervised and weakly supervised settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.