Abstract

We introduce a learning-based approach to manipulation in unstructured environments. This approach permits autonomous acquisition of manipulation expertise from interactions with the environment. The resulting expertise enables a robot to perform effective manipulation based on partial state information. The manipulation expertise is represented in a relational state representation and learned using relational reinforcement learning. The relational representation renders learning tractable by collapsing a large number of states onto a single, relational state. The relational state representation is carefully grounded in the perceptual and interaction skills of the robot. This ensures that symbolically learned knowledge remains meaningful in the physical world. We experimentally validate the proposed learning approach on the task of manipulating an articulated object to obtain a model of its kinematic structure. Our experiments demonstrate that the manipulation expertise acquired by the robot leads to substantial performance improvements. These improvements are maintained when experience is applied to previously unseen objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.