Abstract
As a decisive part in the success of Mobility-as-a-Service (MaaS), spatio-temporal dynamics modeling on mobility networks is a challenging task particularly considering scenarios where open-world events drive mobility behavior deviated from the routines. While tremendous progress has been made to model high-level spatio-temporal regularities with deep learning, most, if not all of the existing methods are neither aware of the dynamic interactions among multiple transport modes on mobility networks, nor adaptive to unprecedented volatility brought by potential open-world events. In this paper, we are therefore motivated to improve the canonical spatio-temporal network (ST-Net) from two perspectives: (1) design a heterogeneous mobility information network (HMIN) to explicitly represent intermodality in multimodal mobility; (2) propose a memory-augmented dynamic filter generator (MDFG) to generate sequence-specific parameters in an on-the-fly fashion for various scenarios. The enhanced event-aware spatio-temporal network, namely EAST-Net, is evaluated on several real-world datasets with a wide variety and coverage of open-world events. Both quantitative and qualitative experimental results verify the superiority of our approach compared with the state-of-the-art baselines. What is more, experiments show generalization ability of EAST-Net to perform zero-shot inference over different open-world events that have not been seen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.