Abstract
Traditional intrusion detection systems (IDS) detect attacks by comparing current behavior to signatures of known attacks. One main drawback is the inability of detecting new attacks which do not have known signatures. In this paper we propose a learning algorithm that constructs models of normal behavior from attack-free network traffic. Behavior that deviates from the learned normal model signals possible novel attacks. Our IDS is unique in two respects. First, it is nonstationary, modeling probabilities based on the time since the last event rather than on average rate. This prevents alarm floods. Second, the IDS learns protocol vocabularies (at the data link through application layers) in order to detect unknown attacks that attempt to exploit implementation errors in poorly tested features of the target software. On the 1999 DARPA IDS evaluation data set [9], we detect 70 of 180 attacks (with 100 false alarms), about evenly divided between user behavioral anomalies (IP addresses and ports, as modeled by most other systems) and protocol anomalies. Because our methods are unconventional there is a significant non-overlap of our IDS with the original DARPA participants, which implies that they could be combined to increase coverage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.