Abstract

While video-based activity analysis and recognition has received much attention, existing body of work mostly deals with single object/person case. Coordinated multi-object activities, or group activities, present in a variety of applications such as surveillance, sports, and biological monitoring records, etc., are the main focus of this paper. Unlike earlier attempts which model the complex spatial temporal constraints among multiple objects with a parametric Bayesian network, we propose a Discriminative Temporal Interaction Manifold (DTIM) framework as a data-driven strategy to characterize the group motion pattern without employing specific domain knowledge. In particular, we establish probability densities on the DTIM, whose element, the discriminative temporal interaction matrix, compactly describes the coordination and interaction among multiple objects in a group activity. For each class of group activity we learn a multi-modal density function on the DTIM. A Maximum a Posteriori (MAP) classifier on the manifold is then designed for recognizing new activities. Experiments on football play recognition demonstrate the effectiveness of the approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.