Abstract

Recently, feature generating methods have been successfully applied to zero-shot learning (ZSL). However, most previous approaches only generate visual representations for zero-shot recognition. In fact, typical ZSL is a classic multi-modal learning protocol which consists of a visual space and a semantic space. In this paper, therefore, we present a new method which can simultaneously generate both visual representations and semantic representations so that the essential multi-modal information associated with unseen classes can be captured. Specifically, we address the most challenging issue in such a paradigm, i.e., how to handle the domain shift and thus guarantee that the learned representations are modality-invariant. To this end, we propose two strategies: 1) leveraging the mutual information between the latent visual representations and the semantic representations; 2) maximizing the entropy of the joint distribution of the two latent representations. By leveraging the two strategies, we argue that the two modalities can be well aligned. At last, extensive experiments on five widely used datasets verify that the proposed method is able to significantly outperform previous the state-of-the-arts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.