Abstract

Olfactory discrimination (OD) learning consists of two phases: an initial N-methyl-D-aspartate (NMDA) receptor-sensitive rule-learning phase, followed by an NMDA receptor (NMDAR)-insensitive pair-learning phase. The rule-learning phase is accompanied by changes in the composition and function of NMDARs at synapses in the piriform cortex, resulting in a high level of the NR2a subunit relative to NR2b. Here we show that the learning-induced changes in NMDAR composition in the adult piriform cortex are due to a decrease in the level of the NR2b subunit protein, rather than an increase in the level of NR2a. Chronic administration of an NMDAR open channel blocker during training delays OD learning and blocks learning-induced changes in NMDAR subunit composition. However, the animals still learn the OD task. Our data demonstrate that learning can occur in the absence of activity-dependent regulation of NMDAR composition, suggesting differences in the mechanism for long-term maintenance of NMDAR-dependent and NMDAR-independent learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.