Abstract
We consider a generalized model of learning from expert advice in which experts could abstain from participating at some rounds. Our proposed online algorithm falls into the class of weighted average predictors and uses a time-varying multiplicative weight update rule. This update rule changes the weight of an expert based on his or her relative performance compared to the average performance of available experts at the current round. This makes the algorithm suitable for recommendation systems in the presence of an adversary with many potential applications in the new emerging area of the Internet of Things. We prove the convergence of our algorithm to the best expert, defined in terms of both availability and accuracy, in the stochastic setting. In particular, we show the applicability of our definition of best expert through convergence analysis of another well-known algorithm in this setting. Finally, through simulation results on synthetic and real datasets, we justify the out-performance of our proposed algorithms compared to the existing ones in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Design Automation of Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.