Abstract

In material science, the enhancement of a specific material performance is often accompanied by undermining another material property, notoriously known as the performance tradeoffs, such as that between strength and toughness, stiffness and energy dissipation, and flexibility and fast response. Free combinations of material properties that go beyond these performance tradeoffs are highly desirable in areas as diverse as civil engineering, soft robotics, armor designs, and reconfigurable metamaterials. Learning from nature, we 3D print architected materials with bio-inspired microstructures that successfully surpass the above performance tradeoffs. The integration of microstructural elements on multiple length scales (hierarchical designs) and on one specific length scale (hybrid designs) are further discussed and compared. Through experimental and theoretical analysis, we reveal that the performance enhancements stem from the material architecture's significant manipulation over the deformation field, crack location, and crack pattern. This study on the relationship between material microstructure and material performance will aid architected material design with ideal combinations of mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.