Abstract
Fairness has become a central issue for our research community as classification algorithms are adopted in societally critical domains such as recidivism prediction and loan approval. In this work, we consider the potential bias based on protected attributes (e.g., race and gender), and tackle this problem by learning latent representations of individuals that are statistically indistinguishable between protected groups while sufficiently preserving other information for classification. To do that, we develop a minimax adversarial framework with a generator to capture the data distribution and generate latent representations, and a critic to ensure that the distributions across different protected groups are similar. Our framework provides theoretical guarantee with respect statistical parity and individual fairness. Empirical results on four real-world datasets also show that the learned representation can effectively be used for classification tasks such as credit risk prediction while obstructing information related to protected groups, especially when removing protected attributes is not sufficient for fair classification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.