Abstract

Accurate prediction of bus arrival times is a challenging problem in the public transportation field. Previous studies have shown that to improve prediction accuracy, more heterogeneous measurements provide better results. So what other factors should be added into the prediction model? Traditional prediction methods mainly use the arrival time and the distance between stations, but do not make full use of dynamic factors such as passenger number, dwell time, bus driving efficiency, etc. We propose a novel approach that takes full advantage of dynamic factors. Our approach is based on a Recurrent Neural Network (RNN). The experimental results indicate that a variety of prediction algorithms (such as Support Vector Machine, Kalman filter, Multilayer Perceptron, and RNN) have significantly improved performance after using dynamic factors. Further, we introduce RNN with an attention mechanism to adaptively select the most relevant input factors. Experiments demonstrate that the prediction accuracy of RNN with an attention mechanism is better than RNN with no attention mechanism when there are heterogeneous input factors. The experimental results show the superior performances of our approach on the data set provided by Jinan Public Transportation Corporation.

Highlights

  • Accurate prediction of bus arrival times is of great significance for urban public transportation planning, real-time bus scheduling, and facilitating public travel

  • Support Vector Machine (SVM) is combined with a Genetic Algorithm [5], Kalman filter [6], and artificial neural network (ANN) [7], respectively

  • The question becomes how can we further improve the accuracy of bus arrival time prediction?

Read more

Summary

Introduction

Accurate prediction of bus arrival times is of great significance for urban public transportation planning, real-time bus scheduling, and facilitating public travel. There are many ways to predict bus arrival times. Kalman filtering is a common method for bus arrival time prediction [1,2]. SVM is combined with a Genetic Algorithm [5], Kalman filter [6], and artificial neural network (ANN) [7], respectively. In addition to Kalman filtering and SVM, there are other time series prediction methods, such as road segment average travel time [8], the Relevance Vector Machine Regression [9], clustering [10], Queueing Theory combined with Machine Learning [11], and Random Forests [12]. The question becomes how can we further improve the accuracy of bus arrival time prediction?

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.