Abstract

Brain-derived neurotrophic factor (BDNF) participates in synaptic plasticity and the adaptive changes in the strength of communication between neurons thought to underlie aspects of behavioral adaptation. By selectively deleting BDNF from the forebrain of mice using the Cre site-specific DNA recombinase, we were able to study the requirements for BDNF in behaviors such as learning and anxiety. Early-onset forebrain-restricted BDNF mutant mice (Emx-BDNF KO) that develop in the absence of BDNF in the dorsal cortex, hippocampus, and parts of the ventral cortex and amygdala failed to learn the Morris Water Maze task, a hippocampal-dependent visuo-spatial learning task. Freezing during all phases of cued-contextual fear conditioning, a behavioral task designed to study hippocampal-dependent associative learning, was enhanced. These mice learned a brightness discrimination task well but were impaired in a more difficult pattern discrimination task. Emx-BDNF KO mice did not exhibit altered sensory processing and gating, as measured by the acoustic startle response or prepulse inhibition of the startle response. Although they were less active in an open-field arena, they did not show alterations in anxiety, as measured in the elevated-plus maze, black-white chamber or mirrored chamber tasks. Combined, these data indicate that although an absence of forebrain BDNF does not disrupt acoustic sensory processing or alter baseline anxiety, specific forms of learning are severely impaired.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.