Abstract

Learning control should focus on imitating natural fish's adaptability to complex and dynamic environment to some extent, rather than mimicking streamlined shapes or specific actuators to develop more mechanical prototypes. In this paper, an experimental study on a proposed learning control of the robotic undulating fin, RoboGnilos, is suggested and explored. This study takes inspirations from biological world to practical control algorithms. In detail, an iterative learning scheme based control is studied with the cooperation of a filter to reduce the measurement noise, and a curve fitting component to keep the necessary phase difference between neighboring fin rays. Moreover, the iterative learning control algorithm is designed and implemented for practical applications. The experimental results validate that the proposed learning control can effectively improve the propulsion of RoboGnilos. For instance, the steady propulsion velocity may be enhanced by over 40% with some specified parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.