Abstract

Recent advances in capture technologies have increased the production of 3D content in the form of Point Clouds (PCs). The perceived quality of such data can be impacted by typical processing including acquisition, compression, transmission, visualization, etc. In this paper, we propose a learning-based method that efficiently predicts the quality of distorted PCs through a set of features extracted from the reference PC and its degraded version. The quality index is obtained here by combining the considered features using a Support Vector Regression (SVR) model. The performance contribution of each considered feature and their combination are compared. We then discuss the experimental results obtained in the context of state-of-the-art methods using 2 publicly available datasets. We also evaluate the ability of our method to predict unknown PCs through a cross-dataset evaluation. The results show the relevance of introducing a learning step to merge features for the quality assessment of such data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.