Abstract

We presented and evaluated an approach based on HMM, GMR, and dynamical systems to allow robots to acquire new skills by imitation. Using HMM allowed us to get rid of the explicit time dependency that was considered in our previous work [12], by encapsulating precedence information within the statistical representation. In the context of separated learning and reproduction processes, this novel formulation was systematically evaluated with respect to our previous approach, LWR [20], LWPR [21], and DMPs [13]. We finally presented applications on different kinds of robots to highlight the flexibility of the proposed approach in three different learning by imitation scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.