Abstract
This paper gives the first rigorous convergence analysis of analogues of Watkins's Q-learning algorithm, applied to average cost control of finite-state Markov chains. We discuss two algorithms which may be viewed as stochastic approximation counterparts of two existing algorithms for recursively computing the value function of the average cost problem---the traditional relative value iteration (RVI) algorithm and a recent algorithm of Bertsekas based on the stochastic shortest path (SSP) formulation of the problem. Both synchronous and asynchronous implementations are considered and analyzed using the ODE method. This involves establishing asymptotic stability of associated ODE limits. The SSP algorithm also uses ideas from two-time-scale stochastic approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.