Abstract

In many application domains, there is a need for learning algorithms that can effectively exploit attribute value taxonomies (AVT)-hierarchical groupings of attribute values-to learn compact, comprehensible and accurate classifiers from data-including data that are partially specified. This paper describes AVT-NBL, a natural generalization of the naïve Bayes learner (NBL), for learning classifiers from AVT and data. Our experimental results show that AVT-NBL is able to generate classifiers that are substantially more compact and more accurate than those produced by NBL on a broad range of data sets with different percentages of partially specified values. We also show that AVT-NBL is more efficient in its use of training data: AVT-NBL produces classifiers that outperform those produced by NBL using substantially fewer training examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.