Abstract
As current methods for content-based retrieval are incapable of capturing the semantics of images, we experiment with using spectral methods to infer a semantic space from user's relevance feedback, so that our system will gradually improve its retrieval performance through accumulated user interactions. In addition to the long-term learning process, we also model the traditional approaches to query refinement using relevance feedback as a short-term learning process. The proposed short- and long-term learning frameworks have been integrated into an image retrieval system. Experimental results on a large collection of images have shown the effectiveness and robustness of our proposed algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.