Abstract

To investigate the demonstration in large language models (LLMs) for biomedical relation extraction. This study introduces a framework comprising three types of adaptive tuning methods to assess their impacts and effectiveness. Our study was conducted in two phases. Initially, we analyzed a range of demonstration components vital for LLMs' biomedical data capabilities, including task descriptions and examples, experimenting with various combinations. Subsequently, we introduced the LLM instruction-example adaptive prompting (LEAP) framework, including instruction adaptive tuning, example adaptive tuning, and instruction-example adaptive tuning methods. This framework aims to systematically investigate both adaptive task descriptions and adaptive examples within the demonstration. We assessed the performance of the LEAP framework on the DDI, ChemProt, and BioRED datasets, employing LLMs such as Llama2-7b, Llama2-13b, and MedLLaMA_13B. Our findings indicated that Instruction + Options + Example and its expanded form substantially improved F1 scores over the standard Instruction + Options mode for zero-shot LLMs. The LEAP framework, particularly through its example adaptive prompting, demonstrated superior performance over conventional instruction tuning across all models. Notably, the MedLLAMA_13B model achieved an exceptional F1 score of 95.13 on the ChemProt dataset using this method. Significant improvements were also observed in the DDI 2013 and BioRED datasets, confirming the method's robustness in sophisticated data extraction scenarios. The LEAP framework offers a compelling strategy for enhancing LLM training strategies, steering away from extensive fine-tuning towards more dynamic and contextually enriched prompting methodologies, showcasing in biomedical relation extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.