Abstract

Tropical forest soils are known to emit large amounts of reactive nitrogen oxide compounds, often referred to collectively as NOy (NOy = NO + NO2 + HNO3 + organic nitrates). Plants are known to assimilate and emit NOy and it is therefore likely that plant canopies affect the atmospheric concentration of reactive nitrogen compounds by assimilating or emitting some fraction of the soil-emitted NOy. It is crucial to understand the magnitude of the canopy effects and the primary environmental and physiological controls over NOy exchange in order to accurately quantify regional NOy inventories and parameterize models of tropospheric photochemistry. In this study we focused on nitrogen dioxide (NO2), which is the component of NOy that most directly catalyzes the chemistry of O3 dynamics, one of the most abundant oxidative species in the troposphere, and which has been reported as the NOy species that is most readily exchanged between plants and the atmosphere. Leaf chamber measurements of NO2 flux were measured in 25 tree species growing in a wet tropical forest in the Republic of Panama. NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.53-1.60ppbv (the NO2 compensation point) depending on species, with the highest rate of emission being 50pmol m(-2) s(-1) at <0.1ppbv. NO2 was assimilated by leaves at ambient NO2 concentrations above the compensation point, with the maximum observed uptake rate being 1,550pmol m(-2) s(-1) at 5ppbv. No seasonal variation in leaf NO2 flux was observed in this study and leaf emission and uptake appeared to be primarily controlled by leaf nitrogen and stomatal conductance, respectively. When scaled to the entire canopy, soil NO emission rates to the atmosphere were estimated to be maximally altered ±19% by the overlying canopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.