Abstract

High temperature is a major factor affecting grain yield and plant senescence in wheat growing regions of central and east China. In this study, two different wheat cultivars, Yangmai 9 with low-grain protein concentration and Xuzhou 26 with high-grain protein concentration, were exposed to different temperature regimes in growth chambers during grain filling. Four day/night temperature regimes of 34°C/22°C, 32°C/24°C, 26°C/14°C, and 24°C/16°C were established to obtain two daily temperatures of 28 and 20°C, and two diurnal day/night temperature differences of 12 and 8°C. Concentration of a lipid peroxidation product malondialdehyde (MDA), activities of the antioxidants superoxide dismutase (SOD) and catalase (CAT), chlorophyll concentration (SPAD) in flag leaves and kernel weight were determined. Results show that activities of SOD and CAT in leaves increased markedly on 14 days after anthesis (DAA) for the high-temperature treatment (34°C/22°C) and then declined. As a result, MDA concentration in leaves increased significantly under high temperature (34°C/22°C and 32°C/24°C). Compared with optimum temperature treatment, high temperature reduced the concentration of soluble protein and SPAD values in flag leaves. Grain-filling rate increased slightly initially, but decreased significantly during late grain filling under high temperature. As a result, final grain weight was reduced markedly under high temperature. Decreases in the activities of SOD and CAT and increases in MDA concentration in leaves were more pronounced with a 12°C of day/night temperature difference when under high temperatures. Kernel weight was higher under 12°C of day/night temperature difference under optimum temperatures (24°C/16°C and 26°C/14°C). The responses to high-temperature regimes appeared to differ between the two wheat cultivars with different grain protein concentrations. It is concluded that a larger diurnal temperature difference hastened the senescence of flag leaves under high-temperature conditions, but retarded senescence under optimum temperature treatments of 26°C/14°C and 24°C/16°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.