Abstract

The advantage of using lead zirconate-titanate (PbZr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.54</sub> Ti <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.46</sub> O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> ) ceramics as an active material in nano-electromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we are developed a specific patterning method based on optical lithography coupled with a dual layer resist process. The main objective is to obtain sub-micron features by lifting off a 100 nm thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.