Abstract

This paper deals with the problem of finding a low-complexity estimate of the impulse response of a linear time-invariant discrete-time dynamic system from noise-corrupted input–output data. To this purpose, we introduce an identification criterion formed by the average (over the input perturbations) of a standard prediction error cost, plus an ℓ1 regularization term which promotes sparse solutions. While it is well known that such criteria do provide solutions with many zeros, a critical issue in our identification context is where these zeros are located, since sensible low-order models should be zero in the tail of the impulse response. The flavor of the key results in this paper is that, under quite standard assumptions (such as i.i.d. input and noise sequences and system stability), the estimate of the impulse response resulting from the proposed criterion is indeed identically zero from a certain time index nl (named the leading order) onwards, with arbitrarily high probability, for a sufficiently large data cardinality N. Numerical experiments are reported that support the theoretical results, and comparisons are made with some other state-of-the-art methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.