Abstract
We show that the leading coefficient of the Kazhdan---Lusztig polynomial P x,w (q) known as μ(x,w) is always either 0 or 1 when w is a Deodhar element of a finite Weyl group. The Deodhar elements have previously been characterized using pattern avoidance in Billey and Warrington (J. Algebraic Combin. 13(2):111---136, [2001]) and Billey and Jones (Ann. Comb. [2008], to appear). In type A, these elements are precisely the 321-hexagon avoiding permutations. Using Deodhar's algorithm (Deodhar in Geom. Dedicata 63(1):95---119, [1990]), we provide some combinatorial criteria to determine when μ(x,w)=1 for such permutations w.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.