Abstract

In the era of time-domain astronomy, scientists often need to generate light curves with varying time-bin. However, an increase in time resolution typically leads to a substantial increase in data transmission. To enhance the data processing efficiency in time-domain astronomy, we propose a novel time-series data model for storing time-series observation data, and we construct the LCGCT, a tool designed to produce light curves with customisable time bins. To validate our approach, we utilise the 7-year MAXI/GSC (Gas Slit Camera of the Monitor of All-sky X-ray Image) X-ray source catalogue, incorporating its 24-h binned light curves for a comparative analysis with our approach. The results obtained confirm the accuracy and effectiveness of our proposed approach. Subsequently, we compare the storage capacity and query performance of LCGCT with a PostgreSQL-based implementation, and results show that LCGCT conserves 75% of the storage space and achieves three times the query speed. Owing to its noteworthy storage and query performance, our proposed time-series data model-based LCGCT can be used in time-domain astronomical projects with high time resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.