Abstract
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD). Vitamin D receptor (VDR) belongs to the nuclear receptor superfamily and exerts a renoprotective effect through inhibiting fibrosis. Microtubule-associated protein 1 light chain 3 (LC3), a key regulator of autophagy, is abundant in the nucleus, although its primary function is in the cytoplasm. The role of nuclear LC3 and the mechanism by which LC3 shuttles between the cytoplasm and nucleoplasm has not been fully elucidated. We found that LC3 binds to VDR in an LC3-interacting region (LIR)-independent manner and promotes the nuclear translocation of VDR. Further study indicated that LC3 promotes the formation of the VDR:retinoid X receptor (RXR) heterodimer and inhibits fibrogenic genes expression in HK-2 cells induced by high glucose. Our result demonstrates that LC3 is a negative regulator of high glucose-induced fibrogenic genes expression through its ability to promote VDR signaling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.